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Reciprocity principle applicable to reflected
radiance measurements and the searchlight problem

Larry Di Girolamo

In a recent paper by Di Girolamo et al. @J. Geophys. Res. D 103, 8795 ~1998!# a heuristic argument was used
to derive a reciprocity principle applicable to reflected solar radiation measurements. Here a formal
derivation of this reciprocity principle is presented. It is also demonstrated that a purely spatial reciprocal
relationship exists between one-dimensional radiative transfer theory and the three-dimensional search-
light problem for horizontally homogeneous media. © 1999 Optical Society of America
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1. Introduction

In a recent paper by Di Girolamo et al.,1 a form of the
reciprocity principle for natural solar radiation ~i.e.,

npolarized sunlight! was presented as proposition 1:

“Proposition 1: Let A and B represent
two surfaces in space, and let the me-
dium that fills the space be fixed in time
during the reciprocal measurements.
The general principle of reciprocity may
be stated in the following way: the ra-
diance emerging from B in direction QB,
caused by illuminating A alone from di-
rection QA with total intensity F, is equal
to the radiance emerging from A in di-
rection QA, caused by illuminating B
alone from direction QB with total inten-
sity F. The same holds for incident ra-
diances and observed total intensities.”

In this statement, the total intensity is the radiance
integrated over area. The term general reciprocity is
used to distinguish it from the more commonly known
directional reciprocity, which involves only the direc-
tional and not the spatial attributes of illumination
and measurement. Directional reciprocity is valid
only for horizontally homogeneous media with con-
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stant illumination at all points and for a few other
special cases.1 In contrast, general reciprocity is valid
regardless of the medium’s heterogeneity, as long as
the scattering phase function has time-reflection sym-
metry everywhere in the medium.

Di Girolamo et al.1 derived proposition 1 by using a
heuristic approach for physical insight and pointed to
Case3 for a rigorous mathematical formulation.
Case’s formulation results in a reciprocity identity
from which all other reciprocal relationships, includ-
ing proposition 1, fall out as special cases. Since the
publication of Ref. 1, this author has received several
requests to formulate proposition 1 from Case’s reci-
procity identity, given that its formulation is explic-
itly derived neither in Ref. 3 nor elsewhere in the
literature. This paper, therefore, provides that der-
ivation. A discussion follows the derivation, where a
link is made between one-dimensional ~1-D! radiative
ransfer theory and the three-dimensional search-
ight problem for horizontally homogeneous media.

2. Derivation

Consider an arbitrarily shaped enclosure with a sur-
face denoted by S, bounding a volume V, as depicted in

ig. 1. The medium contained in V can be an absorb-
ng, emitting, and scattering heterogeneous medium.
et r denote the position vector, V be a unit vector
escribing direction, and n be a unit vector that is
utward normal to surface S ~i.e., n z V , 0 represents
direction incident upon S from outside V!. The ra-

iative transfer equation can then be written as

V z ¹I~r, V! 5 2se~r!I~r, V! 1
ss~r!

4p *
4p

P~r, V, V9!

3 I~r, V9!dV9 1 q~r, V!, (1)
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where I is the radiance, se and ss are the volume
extinction and scattering coefficients, respectively, P
is the scattering phase function normalized as *4p

P~r, V, V9!dV9 5 4p, and q is the emission term,
which can be represented as the product of the vol-
ume absorption coefficient and the Planck function
under thermodynamic equilibrium. Let us assume
that the scattering phase function has time-reversal
symmetry; that is, that

P~r, V, V9! 5 P~r, 2V9, 2V!, (2)

which is often true for scatterers encountered in the
atmosphere. Based on this assumption, Case3 de-
rived the following expression:

*
S

*
Vzn,0

uV z nu@I1~r, 2V!I2
inc~r, V! 2 I1

inc~r, V!

3 I2~r, 2V!#dVdr 5 *
V

*
4p

@I2~r, 2V!q1~r, V!

2 I1~r, V!q2~r, 2V!#dVdr, (3)

where I1~r, V! is the solution to Eq. ~1! within V,
bounded by S, subject to the following boundary con-
dition:

I1~r, V! 5 I1
inc~r, V!, r [ S, n z V , 0. (4)

imilarly, I2~r, 2V! is the solution to

2V z ¹I2~r, 2V! 5 2se~r!I2~r, 2V! 1
ss~r!

4p

3 *
4p

P~r, 2V, 2V9!I2~r, 2V9!dV9 1 q2~r, 2V! (5)

within V, bounded by S, subject to the following
boundary condition:

I2~r, 2V! 5 I2
inc~r, 2V!, r [ S, 2n z V , 0. (6)

Equation ~3! is the reciprocity identity and is equiv-
alent to Eq. ~20! of Ref. 3. Many so-called reciprocity
principles can be derived from this identity. If the
illumination and the measurement are made in dif-
ferent media, the relative refractive index between
the two media needs to be taken into account.4,5 In
the context of proposition 1, the media ~space! are the

Fig. 1. Arbitrarily shaped enclosure with surface S, bounding a
volume V, used to describe the geometry of the derivation.
same and there are no emission terms, so Eq. ~3!
simply becomes

*
S

*
Vzn,0

V z nI1~r, 2V!I2
inc~r, V!dVdr

5 *
S

*
Vzn,0

V z nI1
inc~r, V!I2~r, 2V!dVdr. (7)

To derive proposition 1 from Eq. ~7!, let

I1~r, V! 5 I~r, V; A, V1!, r, A [ S (8)

e the radiance at r [ S in direction V caused by
lluminating area A [ S from direction V1, where the

illumination is taken to be parallel rays of light from
one direction ~e.g., sunlight reaching the Earth in the
context of Ref. 1! and is given by

I1
inc~r, V! 5 d~r 2 rA!d̃~V z V1!F1~r, V!, rA [ A,

(9)

here *S d~r 2 rA!dr 5 area A, d~r 2 rA! 5 1 when r
A, d~r 2 rA! 5 0 when r ¸ A, *4p d̃~V z V1!dV 5 1,

d̃~V z V1! 5 1 when V z V1 5 0, and d̃~V z V1! 5 0 when
z V1 Þ 0. Similarly, let

I2~r, V! 5 I~r, V; B, V2!, r, B [ S (10)

be the radiance at r [ S in direction V caused by
lluminating area B [ S from direction V2, where the

illumination is given by

I2
inc~r, V! 5 d~r 2 rB!d̃~V z V2!F2~r, V!, rB [ B.

(11)

ubstituting Eqs. ~8!–~11! into Eq. ~7! yields

*
S

*
Vzn,0

V z nd~r 2 rB!d̃~V z V2!F2~r, V!

3 I~r, 2V; A, V1!dVdr 5 *
S

*
Vzn,0

V z nd~r 2 rA!

3 d̃~V z V1!F1~r, V!I~r, 2V; B, V2!dVdr,

and carrying out the integration over S and n z V , 0
yields

V2 z n *
B

F2~r, V2!I~r, 2V2; A, V1!dr

5 V1 z n *
A

F1~r, V1!I~r, 2V1; B, V2!dr. (12)

Equation ~12! is equivalent to proposition 1 when
F1 5 F2 5 F. Note that Eq. ~12! is more general than

roposition 1 inasmuch as it demonstrates that the
patial variability in both the incident and the mea-
ured radiation is convoluted. This cannot be de-
uced from proposition 1. Also, there is no
20 May 1999 y Vol. 38, No. 15 y APPLIED OPTICS 3197
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restriction in Eq. ~12! that F1 5 F2 5 F, as implied in
proposition 1.

3. Discussion

In the special case of a horizontally homogeneous
medium with constant and complete illumination
from one direction, F1~r, V1!, F2~r, V2!, I~r, 2V2; A,
V1!, and I~r, 2V1; B, V2! in Eq. ~12! become indepen-
dent of the spatial component, and we are left with

I~2V2; V1!

V1 z nF1~V1!
5

I~2V1; V2!

V2 z nF2~V2!
. (13)

This is the more popular form of the reciprocity prin-
ciple used in optical and geophysical sciences and has
been termed the principle of directional reciprocity.1,6

It is often referred to as the Helmholtz reciprocity
principle, even though von Helmholtz’s original state-
ment7 involved radiation at a point ~i.e., where areas
A and B are infinitesimally small!, included the ef-
fects of polarization, and was independent of the me-
dium’s degree of heterogeneity. Although the effects
of polarization have not been included in this paper,
arriving at a reciprocity relationship as discussed in
Ref. 2 requires symmetry in the phase matrix.

From Eq. ~12!, a link can be made between 1-D
radiative transfer theory and the searchlight prob-
lem. In the searchlight problem, the incident radi-
ation is applied to a single point or a finite area from
a single direction at the top of a horizontally homo-
geneous surface, giving way to a three-dimensional
radiative transfer solution. In 1-D radiative trans-
fer theory, the entire horizontally homogeneous sur-
face is uniformly illuminated, giving way to a 1-D
radiative transfer solution. We can make the link
between the two problems by substituting F1~r, V1! 5
FSL~r, V1!, I~r, 2V2; A, V1! 5 ISL~r, 2V2; A, V1!, F2~r,
V2! 5 F1D~V2!, and I~r, 2V1; B, V2! 5 I1D~2V1; V2!
into Eq. ~12!, which yields

V2 z n *̀ F1D~V2!ISL~r, 2V2; A, V1!dr

5 V1 z n *
A

FSL~r, V1!I1D~2V1; V2!dr. (14)

On the left-hand side of Eq. ~14!, integration is
carried out over the entire illuminated area, which
horizontally extends to infinity in 1-D radiative
transfer theory. Because the one-dimensional
terms are independent of r, Eq. ~14! can be rear-
ranged as

*̀ ISL~r, 2V2; A, V1!dr

V1 z n *
A

FSL~r, V1!dr

5
I1D~2V1; V2!

V2 z nF1D~V2!
. (15)
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The right-hand side of Eq. ~15! is equivalent to the
right-hand side of Eq. ~13!. Equation ~15! can there-
fore be written as

*̀ ISL~r, 2V2; A, V1!dr

V1 z n *
A

FSL~r, V1!dr

5
I1D~2V2; V1!

V1 z nF1D~V1!
. (16)

When the left-hand side of Eq. ~16! is defined as the
total bidirectional reflectance distribution function,
Eq. ~16! states that the total bidirectional reflectance
istribution function calculated in the searchlight
roblem is equal to the bidirectional reflectance distri-
ution function calculated in 1-D radiative transfer
heory for the same horizontally homogeneous me-
ium. Note that Eq. ~16! involves only a switch be-
ween the spatial components of illumination and
easurement and not in the directional components.
herefore, analogously to Eq. ~13!, which was termed
he principle of directional reciprocity, Eq. ~16! may be

termed the principle of spatial reciprocity. Like di-
rectional reciprocity, spatial reciprocity is valid only for
horizontally homogeneous media. Spatial reciprocity
can be used, for example, in validating the theory and
numerical computations of the searchlight problem.
In this case, 1-D radiative transfer theory and numer-
ical calculations provide the benchmark because they
are well established, whereas the theory and numeri-
cal techniques required for handling the searchlight
problem are still active areas of research.8 Solutions
to the searchlight problem are finding utility, for ex-
ample, in emerging remote-sensing techniques for de-
termining cloud properties.9

Partial support from the Jet Propulsion Laboratory
of the California Institute of Technology under con-
tract 961506 is gratefully acknowledged.

References
1. L. Di Girolamo, T. Várnai, and R. Davies, “Apparent breakdown

of reciprocity in reflected solar radiances,” J. Geophys. Res. D
103, 8795–8803 ~1998!.

. S. Chandrasekhar, Radiative Transfer ~Dover, New York, 1960!.
3. K. M. Case, “Transfer problems and the reciprocity principle,”

Rev. Mod. Phys. 29, 651–663 ~1957!.
4. R. Aronson, “Radiative transfer implies a modified reciprocity

relation,” J. Opt. Soc. Am. A 14, 486–490 ~1997!.
5. H. Yang and H. G. Gordon, “Remote sensing of ocean color: as-

sessment of water-leaving radiance bidirectional effects on atmo-
spheric diffuse transmittance,” Appl. Opt. 36, 7887–7897 ~1997!.

6. R. Davies, “Spatial autocorrelation of radiation measured by the
Earth Radiation Budget Experiment: scene inhomogeneity and
reciprocity violation,” J. Geophys. Res. D 99, 20,879–20,887 ~1994!.

7. H. von Helmholtz, “Theorie der Luftschwingungen in Rohren
mit offenen Enden,” Crelle LVII, 1 ~1859!.

8. D. E. Kornreich and B. D. Ganapol, “Numerical evaluation of
the three-dimensional searchlight problem in half-space,” Nucl.
Sci. Eng. 127, 317–337 ~1997!.

9. A. B. Davis, R. F. Cahalan, J. D. Spinhirne, M. J. McGill, and
S. P. Love, “Off-beam lidar: an emerging technique in cloud
remote sensing based on radiative Green-function theory in the
diffusion domain,” Phys. Chem. Earth B, 24~3!, 177–185 ~1999!.


